\geq
Ω
7
α
N
0
Ω
Ŀ
5
۵
-
≥
}
≥
1
•
þ
÷
Ч

STUDY MODULE D	ESCRIPTION FORM					
Name of the module/subject Languages and paradigms of programming		Code 1010334541010334960				
Field of study Information Engineering	Profile of study (general academic, practical) (brak)	Year /Semester				
Elective path/specialty	Subject offered in: Polish	Course (compulsory, elective) obligatory				
Cycle of study:	Form of study (full-time,part-time)					
First-cycle studies	part-time					
No. of hours		No. of credits				
Lecture: 20 Classes: - Laboratory: 20	Project/seminars:	- 4				
Status of the course in the study program (Basic, major, other)	(university-wide, from another f	ield)				
(brak) (brak)						
Education areas and fields of science and art		ECTS distribution (number and %)				
Responsible for subject / lecturer:						
dr inż. Grażyna Brzykcy						
email: grazyna.brzykcy@put.poznan.pl						
tel. 616653724 Wydział Elektryczny						
ul. Piotrowo 3A 60-965 Poznań						
Prerequisites in terms of knowledge, skills and social competencies:						

1	Knowledge	Student has basic knowledge of mathematics, especially in such fields as algebra, analysis and logic, basic knowledge of program constructs, implementation of algorithms, formal languages and programming platforms.
2	Skills	Student is able to use basic techniques to create algorithms, to analyze their complexity, and to use software platforms and environments for simple programs encoding, running and testing.
3	Social competencies	Student understands the importance of stringent accomplishment of a given project with proper notation standards.

Assumptions and objectives of the course:

Presentation of declarative programming styles and rules of choosing the adequate style and language to a class of problems. Development of declarative programming skills in functional and logic programming environments.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Student has organized and theoretically founded knowledge of creation, implementation and applicability of recursive data structures. - [[K_W04]]
- 2. Student has organized and theoretically founded knowledge of computation models and basic declarative program constructions. - [[K_W05]]
- 3. Student is familiarized with state of the art and current trends in programming paradigms. [[K_W19]]

Skills:

- 1. Student is able to create engineer work documentation and declaratively present the work result. [[K U03]]
- 2. Student can use techniques of logic and functional programming to create algorithms. [[K_U09]]
- 3. Student is able to use declarative software platforms and environments for simple programs encoding, running and testing. - [[K_U10]]

Social competencies:

- 1. Student understands and is aware of the importance of issues related to computer engineer activity. Student understands the responsibility for his engineering decisions. - [[K_K02]]
- 2. Student understands the importance of stringent accomplishment of a given project with proper notation standards, proper language. Student understands the importance of keeping deadlines. - [[K_K07]]

Assessment methods of study outcomes

Faculty of Electrical Engineering

Lecture

Written test based on lecture (basic concepts and techniques used in declarative programming).

Laboratory

Students? marks are based on continuous assessment of their programming activity and results of two written tests (creation of simple programs).

Course description

Lectures

Logic as programming language (procedural aspect of SLD-resolution). Data structures and procedures in Prolog. Functional programming: data types, functions, overview of languages and environments. Current trends in declarative programming. Some non-classical programming techniques: evolutionary computation, constraint-based programming, rule systems.

Laboratory

Creation of algorithms and their implementation in declarative programming languages: logic programming language Prolog, and functional programming language Scheme.

Basic bibliography:

- 1. Dybvig R.: The Scheme Programming Language, 4th edition, The MIT Press, 2009.
- 2. Kowalski R.: Logic for problem solving, North-Holland, 1979.
- 3. Michalewicz Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edition, Springer-Verlag, Berlin, 1996.
- 4. Nilsen U., Małuszyński J.: Logic, Programming, and PROLOG, John Wiley & Sons, 2000.
- 5. Van Roy P., Haridi S.: Concepts, Techniques, and Models of Computer Programming, The MIT Press, 2004.

Additional bibliography:

- 1. Ait-Kaci H., Dumant B., Meyer R., Podelski A., Van Roy P.: The Wild LIFE Handbook (Prepublication edition), PRLab., DECorp., 1994.
- 2. Mozart Consortium, The Mozart programming system, http://www.mozart-oz.org, 2006.
- 3. Sterling L., Shapiro E.: The Art of Prolog. Advanced Programming Techniques, MIT Press, 1986.

Result of average student's workload

Activity	Time (working hours)
1. Lecture	20
2. Laboratory	20
3. Preparation to laboratory and tests	60

Student's workload

Source of workload	hours	ECTS			
Total workload	100	4			
Contact hours	40	2			
Practical activities	80	3			